Translate

Tuesday, April 16, 2013

The Moon






The Moon is the only natural satellite of the Earth, and the fifth largest satellite in the Solar System. It is the largest natural satellite of a planet in the Solar System relative to the size of its primary, having 27% the diameter and 60% the density of Earth, resulting in 181 its mass. The Moon is the second densest satellite after Io, a satellite of Jupiter.
The Moon is in synchronous rotation with Earth, always showing the same face with its near side marked by dark volcanic maria that fill between the bright ancient crustal highlands and the prominent impact craters. It is the brightest object in the sky after the Sun, although its surface is actually very dark, with a reflectance similar to that of coal. Its prominence in the sky and its regular cycle of phase shave, since ancient times, made the Moon an important cultural influence on language, calendars, art and mythology. The Moon's gravitational influence produces the ocean tides and the minute lengthening of the day. The Moon's current orbital distance, about thirty times the diameter of the Earth, causes it to appear almost the same size in the sky as the Sun, allowing it to cover the Sun nearly precisely in total solar eclipses. This matching of apparent visual size is a coincidence. The Moon's linear distance from the Earth is currently increasing at a rate of 3.82 ± 0.07 cm per year, but this rate is not constant
The Moon is thought to have formed nearly 4.5 billion years ago, not long after the Earth. Although there have been several hypotheses for its origin in the past, the current most widely accepted explanation is that the Moon formed from the debris left over after a giant impact between Earth and a Mars-sized body. The Moon is the only celestial body other than Earth on which humans have set foot. The Soviet Union's Luna program  was the first to reach the Moon with unmanneds pace craft in 1959; the United States' NASA Apollo program achieved the only manned missions to date, beginning with the first manned lunar orbiting mission by Apollo 8 in 1968, and six manned lunar landings between 1969 and 1972, with the first being Apollo 11. These missions returned over 380 kg of lunar rocks, which have been used to develop a geological understanding of the Moon's origins, the formation of its internal structure, and its subsequent history.
After the Apollo 17 mission in 1972, the Moon has been visited only by unmanned spacecraft, notably by the final Soviet Lunokhod rover. Since 2004, Japan, China, India, the United States, and the European Space Agency have each sent lunar orbiters. These spacecraft have contributed to confirming the discovery of lunar water ice in permanently shadowed craters at the poles and bound into the lunarregolith. Future manned missions to the Moon have been planned, including government as well as privately funded efforts. The Moon remains, under the Outer Space Treaty, free to all nations to explore for peaceful purposes.
    Several mechanisms have been proposed for the Moon's formation 4.527 ± 0.010 billion years ago]some 30–50 million years after the origin of the Solar System These included the fission of the Moon from the Earth's crust through centrifugal force[ (which would require too great an initial spin of the Earth), the gravitational capture of a pre-formed Moon[] (which would require an unfeasibly extended atmosphere of the Earth to dissipate the energy of the passing Moon), and the co-formation of the Earth and the Moon together in the primordial accretion disk (which does not explain the depletion of metallic iron in the Moon). These hypotheses also cannot account for the high angular momentum of the Earth–Moon system
The prevailing hypothesis today is that the Earth–Moon system formed as a result of a giant impact, where a Mars-sized body (named Theia) collided with the newly formed proto-Earth, blasting material into orbit around it, which accreted to form the Moon. Giant impacts are thought to have been common in the early Solar System. Computer simulations modelling a giant impact are consistent with measurements of the angular momentum of the Earth–Moon system and the small size of the lunar core. These simulations also show that most of the Moon came from the impactor, not from the proto-Earth. However more recent tests suggest more of the Moon coalesced from the Earth and not the impactor.Meteorites show that other inner Solar System bodies such as Mars and Vesta have very different oxygen and tungsten isotopic compositions to the Earth, while the Earth and Moon have near-identical isotopic compositions. Post-impact mixing of the vaporized material between the forming Earth and Moon could have equalized their isotopic compositions,[ although this is debated.
The large amount of energy released in the giant impact event and the subsequent reaccretion of material in Earth orbit would have melted the outer shell of the Earth, forming a magma oceanThe newly formed Moon would also have had its own lunar magma ocean; estimates for its depth range from about 500 km to the entire radius of the Moon.[
Despite its accuracy in explaining many lines of evidence, there are still some difficulties that are not fully explained by the giant impact hypothesis, most of them involving the Moon's composition.
In 2001, a team at the Carnegie Institute of Washington reported the most precise measurement of the isotopic signatures of lunar rocks.[] To their surprise, the team found that the rocks from the Apollo program carried an isotopic signature that was identical with rocks from Earth, and were different from almost all other bodies in the Solar System. Since most of the material that went into orbit to form the Moon was thought to come from Theia, this observation was unexpected. In 2007, researchers from the California Institute of Technology announced that there was less than a 1% chance that Theia and Earth had identical isotopic signatures. [ Published in 2012, an analysis of titanium isotopes in Apollo lunar samples showed that the Moon has the same composition as the Earth,[29] which conflicts with what is expected if the Moon formed far from Earth's orbit or from Theia. Variations on GIH may explain this data.

No comments:

Post a Comment